2/(x+2)=-x/(x^2+5x+6)

Simple and best practice solution for 2/(x+2)=-x/(x^2+5x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/(x+2)=-x/(x^2+5x+6) equation:



2/(x+2)=-x/(x^2+5x+6)
We move all terms to the left:
2/(x+2)-(-x/(x^2+5x+6))=0
Domain of the equation: (x+2)!=0
We move all terms containing x to the left, all other terms to the right
x!=-2
x∈R
Domain of the equation: (x^2+5x+6))!=0
x∈R
We calculate fractions
(2x^2+10x)/((x+2)*(x^2+5x+6)))+(-(-x*(x+2))/((x+2)*(x^2+5x+6)))=0
We calculate terms in parentheses: -(-x*(x+2))/((x+2)*(x^2+5x+6))), so:
-x*(x+2))/((x+2)*(x^2+5x+6))
We multiply all the terms by the denominator
-x*(x+2))
We multiply parentheses
-x^2-2x^2
We add all the numbers together, and all the variables
-3x^2
Back to the equation:
-(-3x^2)
We get rid of parentheses
3x^2+(2x^2+10x)/((x+2)*(x^2+5x+6)))+(=0
We multiply all the terms by the denominator
3x^2*((x+2)*(x^2+5x+6)))+(+(2x^2+10x)=0
We get rid of parentheses
3x^2*((x+2)*(x^2+5x+6)))+(+2x^2+10x=0
We add all the numbers together, and all the variables
2x^2+3x^2*((x+2)*(x^2+5x+6)))+(+10x=0

See similar equations:

| 12=a/15 | | (x+6)×8=32x | | 30=m-17 | | 2/(x+2)=-x/(x2+5x+6) | | 2x+10x=-16+x | | =9x2+12x-4 | | Q=20-3p | | 1x+1000x=7262 | | 2x+3x*5=25 | | 2(f-8)+5=7 | | 10÷x-9=6 | | -15=6p=15-10p | | X+.07x=4.17 | | 2(x-1)=2+x | | 2(m+12)=-14 | | 3.5(x)=50 | | 6b–4=8(2+¼b) | | x=-2x+96 | | 91-8x=10+x | | 8x―5=2+19 | | 0.48+0.04x=x | | 8x-45=-6x-13 | | (D^3+D^4-7D^3-11D^2-8D-12)y=0 | | 7n+12=3n | | 121x^+22x+1=0 | | 0.5x+4=0.75x+3 | | 7(2c–1)–3=6+6c | | 3x^2+15=81 | | (12+x)0.04=× | | 81x^2+90x+9=0 | | 5x-1.5=4x+0.8 | | 5x-1.8=2.7+4x |

Equations solver categories